Mms19 protein functions in nucleotide excision repair by sustaining an adequate cellular concentration of the TFIIH component Rad3.

نویسندگان

  • Haiping Kou
  • Ying Zhou
  • R M Charlotte Gorospe
  • Zhigang Wang
چکیده

Nucleotide excision repair (NER) is a major cellular defense mechanism against DNA damage. We have investigated the role of Mms19 in NER in the yeast Saccharomyces cerevisiae. NER was deficient in the mms19 deletion mutant cell extracts, which was complemented by the NER/transcription factor TFIIH, but not by purified Mms19 protein. In mms19 mutant cells, protein levels of the core TFIIH component Rad3 (XPD homologue) and Ssl2 (XPB homologue) were significantly reduced by up to 3.5- and 2.2-fold, respectively. The other four essential subunits of the core TFIIH, Tfb1, Tfb2, Ssl1, and Tfb4, and the TFIIK subunits Tfb3, Kin28, and Ccl1 of the holo TFIIH were not much affected by Mms19. Elevating Rad3 protein concentration by overexpressing the protein from a plasmid under the GAL1 promoter control restored proficient NER in mms19 mutant cells, as indicated by complementation for UV sensitivity. Overexpression of Ssl2 had no effect on repair. Overexpression of Rad3, Ssl2, or both proteins, however, could not correct the temperature-sensitive growth defect of mms19 mutant cells. These results show that Mms19 functions in NER by sustaining an adequate cellular concentration of the TFIIH component Rad3 and suggest that Mms19 has distinct and separable functions in NER and cell growth, thus implicating Mms19 protein as a novel multifunctional regulator in cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saccharomyces cerevisiae mms19 mutants are deficient in transcription-coupled and global nucleotide excision repair.

The recently cloned Saccharomyces cerevisiae MMS19 gene appears to be involved in both nucleotide excision repair (NER) and transcription, which is also the case for components of the NER/transcription complex TFIIH. Unlike TFIIH however, the Mms19 protein does not affect NER in a highly purified in vitro system. In order to investigate the role of Mms19 in NER, we have analysed the repair capa...

متن کامل

Cloning of a human homolog of the yeast nucleotide excision repair gene MMS19 and interaction with transcription repair factor TFIIH via the XPB and XPD helicases.

Nucleotide excision repair (NER) removes UV-induced photoproducts and numerous other DNA lesions in a highly conserved 'cut-and-paste' reaction that involves approximately 25 core components. In addition, several other proteins have been identified which are dispensable for NER in vitro but have an undefined role in vivo and may act at the interface of NER and other cellular processes. An intri...

متن کامل

Posttranslational inhibition of Ty1 retrotransposition by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p.

rtt4-1 (regulator of Ty transposition) is a cellular mutation that permits a high level of spontaneous Ty1 retrotransposition in Saccharomyces cerevisiae. The RTT4 gene is allelic with SSL2 (RAD25), which encodes a DNA helicase present in basal transcription (TFIIH) and nucleotide excision repair (NER) complexes. The ssl2-rtt (rtt4-1) mutation stimulates Ty1 retrotransposition, but does not alt...

متن کامل

DNA repair deficiencies associated with mutations in genes encoding subunits of transcription initiation factor TFIIH in yeast.

Several proteins, including Rad3 and Rad25(Ssl2), are essential for nucleotide excision repair (NER) and function in the RNA polymerase II transcription initiation complex TFIIH. Mutations in genes encoding two other subunits of TFIIH, TFB1 and SSL1, result in UV sensitivity and have been shown to take part in NER in an in vitro system. However, a deficiency in global NER does not exclude the p...

متن کامل

Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein.

The human basal transcription factor TFIIH plays a central role in two distinct processes. TFIIH is an obligatory component of the RNA polymerase II (RNAP II) transcription initiation complex. Additionally, it is believed to be the core structure around which some if not all the components of the nucleotide excision repair (NER) machinery assemble to constitute a nucleotide excision repairosome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 41  شماره 

صفحات  -

تاریخ انتشار 2008